NYY-J PVC 0.6/1kV Power Cable

Eland Product Group: A9N

APPLICATION
Power and control cable for fixed installation. Can be used indoors, outdoors, underground, in concrete and in water.

CHARACTERISTICS
Voltage Rating Uo/U 0.6/1kV
Temperature Rating
Fixed: -15ºC to +70ºC
Flexed: -5ºC to +50ºC
Minimum Bending Radius
Fixed: 12 x overall diameter

CONSTRUCTION
Conductor
RE: Class 1 solid copper conductor
RM: Class 2 stranded copper conductor

Insulation
PVC (Polyvinyl Chloride)

Filler
PVC (Polyvinyl Chloride)

Sheath
PVC (Polyvinyl Chloride)

Core Identification
3 core: ● Green/Yellow ● Blue ● Brown
4 core: ● Green/Yellow ● Brown ● Black ● Grey
5 core: ● Green/Yellow ● Brown ● Black ● Grey ● Blue
7 core and above: ● Black with ○ White numbers

Sheath Colour
● Black

Note
NYY-O (without Green/Yellow earth conductor) also available

STANDARDS
IEC 60502-1
Flame retardant according to IEC/EN 60332-1-2

ISO/IEC 17025 LABORATORY TESTED
This product is subject to the Quality Assurance protocols of The Cable Lab®, an ISO/IEC 17025 accredited cable testing laboratory. Testing includes vertical flame, conductor resistance, tensile & elongation, and dimensional consistency, verified to published standards and approved product drawings.

REGULATORY COMPLIANCE
This cable is compliant with European Regulation EN 50575, the Construction Products Regulation.

This cable meets the requirements of the Low Voltage Directive 2014/35/EU and the RoHS Directive 2011/65/EU. RoHS compliance has been tested and confirmed by The Cable Lab® as meeting the requirements of the BSI RoHS Trusted Kitemark™.
Dimensions

<table>
<thead>
<tr>
<th>ELAND PART NO.</th>
<th>NO. OF CORES</th>
<th>NOMINAL CROSS SECTIONAL AREA mm²</th>
<th>CONDUCTOR TYPE</th>
<th>NOMINAL THICKNESS OF INSULATION mm</th>
<th>NOMINAL THICKNESS OF SHEATH mm</th>
<th>NOMINAL OVERALL DIAMETER mm</th>
<th>NOMINAL WEIGHT kg/km</th>
</tr>
</thead>
<tbody>
<tr>
<td>A9N1025</td>
<td>1</td>
<td>2.5</td>
<td>RE</td>
<td>0.8</td>
<td>1.4</td>
<td>6.15</td>
<td>62</td>
</tr>
<tr>
<td>A9N1040</td>
<td>1</td>
<td>4</td>
<td>RE</td>
<td>1</td>
<td>1.4</td>
<td>7.5</td>
<td>85</td>
</tr>
<tr>
<td>A9N1060</td>
<td>1</td>
<td>6</td>
<td>RE</td>
<td>1</td>
<td>1.4</td>
<td>7.5</td>
<td>108</td>
</tr>
<tr>
<td>A9N1100</td>
<td>1</td>
<td>10</td>
<td>RM</td>
<td>1</td>
<td>1.4</td>
<td>8.6</td>
<td>155</td>
</tr>
<tr>
<td>A9N1116</td>
<td>1</td>
<td>16</td>
<td>RM</td>
<td>1</td>
<td>1.4</td>
<td>9.6</td>
<td>218</td>
</tr>
<tr>
<td>A9N125</td>
<td>1</td>
<td>25</td>
<td>RM</td>
<td>1.2</td>
<td>1.4</td>
<td>11.1</td>
<td>318</td>
</tr>
<tr>
<td>A9N135</td>
<td>1</td>
<td>35</td>
<td>RM</td>
<td>1.2</td>
<td>1.4</td>
<td>12.1</td>
<td>414</td>
</tr>
<tr>
<td>A9N150</td>
<td>1</td>
<td>50</td>
<td>RM</td>
<td>1.4</td>
<td>1.4</td>
<td>13.7</td>
<td>552</td>
</tr>
<tr>
<td>A9N170</td>
<td>1</td>
<td>70</td>
<td>RM</td>
<td>1.4</td>
<td>1.4</td>
<td>15.5</td>
<td>750</td>
</tr>
<tr>
<td>A9N195</td>
<td>1</td>
<td>95</td>
<td>RM</td>
<td>1.6</td>
<td>1.5</td>
<td>17.6</td>
<td>1020</td>
</tr>
<tr>
<td>A9N1120</td>
<td>1</td>
<td>120</td>
<td>RM</td>
<td>1.6</td>
<td>1.6</td>
<td>19.3</td>
<td>1259</td>
</tr>
<tr>
<td>A9N1150</td>
<td>1</td>
<td>150</td>
<td>RM</td>
<td>1.8</td>
<td>1.6</td>
<td>21</td>
<td>1546</td>
</tr>
<tr>
<td>A9N1185</td>
<td>1</td>
<td>185</td>
<td>RM</td>
<td>2</td>
<td>1.7</td>
<td>23.2</td>
<td>1913</td>
</tr>
<tr>
<td>A9N1240</td>
<td>1</td>
<td>240</td>
<td>RM</td>
<td>2.2</td>
<td>1.8</td>
<td>26.2</td>
<td>2471</td>
</tr>
<tr>
<td>A9N1300</td>
<td>1</td>
<td>300</td>
<td>RM</td>
<td>2.4</td>
<td>2</td>
<td>29.2</td>
<td>3097</td>
</tr>
<tr>
<td>A9N2015</td>
<td>2</td>
<td>1.5</td>
<td>RE</td>
<td>0.8</td>
<td>1.8</td>
<td>10</td>
<td>147</td>
</tr>
<tr>
<td>A9N2025</td>
<td>2</td>
<td>2.5</td>
<td>RE</td>
<td>0.8</td>
<td>1.8</td>
<td>10.7</td>
<td>179</td>
</tr>
<tr>
<td>A9N2040</td>
<td>2</td>
<td>4</td>
<td>RM</td>
<td>1</td>
<td>1.8</td>
<td>13</td>
<td>268</td>
</tr>
<tr>
<td>A9N2060</td>
<td>2</td>
<td>6</td>
<td>RM</td>
<td>1</td>
<td>1.8</td>
<td>14.2</td>
<td>337</td>
</tr>
<tr>
<td>A9N210</td>
<td>2</td>
<td>10</td>
<td>RM</td>
<td>1</td>
<td>1.8</td>
<td>16.2</td>
<td>472</td>
</tr>
<tr>
<td>A9N216</td>
<td>2</td>
<td>16</td>
<td>RM</td>
<td>1</td>
<td>1.8</td>
<td>18.2</td>
<td>644</td>
</tr>
<tr>
<td>A9N3015</td>
<td>3</td>
<td>1.5</td>
<td>RE</td>
<td>0.8</td>
<td>1.8</td>
<td>10.4</td>
<td>166</td>
</tr>
<tr>
<td>A9N3025</td>
<td>3</td>
<td>2.5</td>
<td>RE</td>
<td>0.8</td>
<td>1.8</td>
<td>11.3</td>
<td>212</td>
</tr>
<tr>
<td>A9N3040</td>
<td>3</td>
<td>4</td>
<td>RE</td>
<td>1</td>
<td>1.8</td>
<td>13.1</td>
<td>299</td>
</tr>
<tr>
<td>A9N3060</td>
<td>3</td>
<td>6</td>
<td>RM</td>
<td>1</td>
<td>1.8</td>
<td>15</td>
<td>402</td>
</tr>
<tr>
<td>A9N310</td>
<td>3</td>
<td>10</td>
<td>RM</td>
<td>1</td>
<td>1.8</td>
<td>17.1</td>
<td>570</td>
</tr>
<tr>
<td>A9N316</td>
<td>3</td>
<td>16</td>
<td>RM</td>
<td>1</td>
<td>1.8</td>
<td>19.2</td>
<td>789</td>
</tr>
<tr>
<td>A9N325</td>
<td>3</td>
<td>25</td>
<td>RM</td>
<td>1.2</td>
<td>1.8</td>
<td>22.1</td>
<td>1141</td>
</tr>
<tr>
<td>A9N335</td>
<td>3</td>
<td>35</td>
<td>RM</td>
<td>1.2</td>
<td>1.8</td>
<td>24.1</td>
<td>1462</td>
</tr>
<tr>
<td>A9N350</td>
<td>3</td>
<td>50</td>
<td>RM</td>
<td>1.4</td>
<td>1.8</td>
<td>27.6</td>
<td>1964</td>
</tr>
<tr>
<td>A9N370</td>
<td>3</td>
<td>70</td>
<td>RM</td>
<td>1.6</td>
<td>2.1</td>
<td>36.3</td>
<td>3635</td>
</tr>
<tr>
<td>A9N395</td>
<td>3</td>
<td>95</td>
<td>RM</td>
<td>1.6</td>
<td>2.2</td>
<td>40</td>
<td>4488</td>
</tr>
<tr>
<td>A9N4015</td>
<td>4</td>
<td>1.5</td>
<td>RE</td>
<td>0.8</td>
<td>1.8</td>
<td>11.6</td>
<td>198</td>
</tr>
<tr>
<td>A9N4025</td>
<td>4</td>
<td>2.5</td>
<td>RE</td>
<td>0.8</td>
<td>1.8</td>
<td>12.1</td>
<td>252</td>
</tr>
<tr>
<td>A9N4040</td>
<td>4</td>
<td>4</td>
<td>RM</td>
<td>1</td>
<td>1.8</td>
<td>15.1</td>
<td>391</td>
</tr>
<tr>
<td>A9N4060</td>
<td>4</td>
<td>6</td>
<td>RM</td>
<td>1</td>
<td>1.8</td>
<td>16.5</td>
<td>465</td>
</tr>
<tr>
<td>A9N410</td>
<td>4</td>
<td>10</td>
<td>RM</td>
<td>1</td>
<td>1.8</td>
<td>18.6</td>
<td>702</td>
</tr>
<tr>
<td>A9N416</td>
<td>4</td>
<td>16</td>
<td>RM</td>
<td>1</td>
<td>1.8</td>
<td>21.1</td>
<td>992</td>
</tr>
<tr>
<td>A9N425</td>
<td>4</td>
<td>25</td>
<td>RM</td>
<td>1.2</td>
<td>1.8</td>
<td>24.2</td>
<td>1431</td>
</tr>
<tr>
<td>A9N435</td>
<td>4</td>
<td>35</td>
<td>RM</td>
<td>1.2</td>
<td>1.8</td>
<td>26.6</td>
<td>1861</td>
</tr>
<tr>
<td>A9N450</td>
<td>4</td>
<td>50</td>
<td>RM</td>
<td>1.4</td>
<td>1.9</td>
<td>30.9</td>
<td>2535</td>
</tr>
<tr>
<td>A9N470</td>
<td>4</td>
<td>70</td>
<td>RM</td>
<td>1.4</td>
<td>2.1</td>
<td>35.1</td>
<td>3441</td>
</tr>
<tr>
<td>A9N495</td>
<td>4</td>
<td>95</td>
<td>RM</td>
<td>1.6</td>
<td>2.2</td>
<td>40.4</td>
<td>4691</td>
</tr>
<tr>
<td>A9N4120</td>
<td>4</td>
<td>120</td>
<td>RM</td>
<td>1.6</td>
<td>2.4</td>
<td>44.2</td>
<td>5757</td>
</tr>
<tr>
<td>A9N4150</td>
<td>4</td>
<td>150</td>
<td>RM</td>
<td>1.8</td>
<td>2.5</td>
<td>48.5</td>
<td>7095</td>
</tr>
<tr>
<td>A9N4185</td>
<td>4</td>
<td>185</td>
<td>RM</td>
<td>2</td>
<td>2.7</td>
<td>53.9</td>
<td>8810</td>
</tr>
<tr>
<td>A9N4240</td>
<td>4</td>
<td>240</td>
<td>RM</td>
<td>2.2</td>
<td>2.9</td>
<td>61.1</td>
<td>11400</td>
</tr>
</tbody>
</table>
CONDUCTORS

Class 1 Solid Conductors for Single Core and Multi-Core Cables

<table>
<thead>
<tr>
<th>ELAND PART NO.</th>
<th>NO. OF CORES</th>
<th>NOMINAL CROSS SECTIONAL AREA mm²</th>
<th>CONDUCTOR TYPE</th>
<th>NOMINAL THICKNESS OF INSULATION mm</th>
<th>NOMINAL THICKNESS OF SHEATH mm</th>
<th>NOMINAL OVERALL DIAMETER mm</th>
<th>NOMINAL WEIGHT kg/km</th>
</tr>
</thead>
<tbody>
<tr>
<td>A9N5015</td>
<td>5</td>
<td>1.5</td>
<td>RE</td>
<td>10.8</td>
<td>1.8</td>
<td>12</td>
<td>232</td>
</tr>
<tr>
<td>A9N5025</td>
<td>5</td>
<td>2.5</td>
<td>RE</td>
<td>0.8</td>
<td>1.8</td>
<td>13.1</td>
<td>302</td>
</tr>
<tr>
<td>A9N5040</td>
<td>5</td>
<td>4</td>
<td>RM</td>
<td>1</td>
<td>1.8</td>
<td>16.6</td>
<td>477</td>
</tr>
<tr>
<td>A9N5060</td>
<td>5</td>
<td>6</td>
<td>RM</td>
<td>1</td>
<td>1.8</td>
<td>18.2</td>
<td>618</td>
</tr>
<tr>
<td>A9N510</td>
<td>5</td>
<td>10</td>
<td>RM</td>
<td>1</td>
<td>1.8</td>
<td>20.3</td>
<td>853</td>
</tr>
<tr>
<td>A9N516</td>
<td>5</td>
<td>16</td>
<td>RM</td>
<td>1</td>
<td>1.8</td>
<td>23.1</td>
<td>1212</td>
</tr>
<tr>
<td>A9N525</td>
<td>5</td>
<td>25</td>
<td>RM</td>
<td>0.8</td>
<td>1.8</td>
<td>26.6</td>
<td>280</td>
</tr>
<tr>
<td>A9N7015</td>
<td>7</td>
<td>1.5</td>
<td>RE</td>
<td>1</td>
<td>1.8</td>
<td>16.6</td>
<td>477</td>
</tr>
<tr>
<td>A9N7025</td>
<td>7</td>
<td>2.5</td>
<td>RE</td>
<td>0.8</td>
<td>1.8</td>
<td>14.1</td>
<td>368</td>
</tr>
<tr>
<td>A9N1215</td>
<td>12</td>
<td>1.5</td>
<td>RE</td>
<td>0.8</td>
<td>1.8</td>
<td>16.6</td>
<td>475</td>
</tr>
<tr>
<td>A9N1225</td>
<td>12</td>
<td>2.5</td>
<td>RE</td>
<td>0.8</td>
<td>1.8</td>
<td>18.2</td>
<td>628</td>
</tr>
<tr>
<td>A9N1415</td>
<td>14</td>
<td>1.5</td>
<td>RE</td>
<td>0.8</td>
<td>1.8</td>
<td>17.1</td>
<td>515</td>
</tr>
<tr>
<td>A9N1915</td>
<td>19</td>
<td>1.5</td>
<td>RE</td>
<td>0.8</td>
<td>1.8</td>
<td>18.9</td>
<td>648</td>
</tr>
<tr>
<td>A9N1925</td>
<td>19</td>
<td>2.5</td>
<td>RE</td>
<td>0.8</td>
<td>1.8</td>
<td>20.3</td>
<td>843</td>
</tr>
<tr>
<td>A9N2715</td>
<td>27</td>
<td>1.5</td>
<td>RE</td>
<td>0.8</td>
<td>1.8</td>
<td>22.6</td>
<td>895</td>
</tr>
</tbody>
</table>

Conductor Types

- **RE**: Round Electrically Conductive Foamed Rubber Insulation
- **RM**: Round Mineral Insulation

Circular, Annealed Copper Conductor

<table>
<thead>
<tr>
<th>NOMINAL CROSS SECTIONAL AREA mm²</th>
<th>MAXIMUM RESISTANCE OF CONDUCTOR AT 20°C ohms/km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain Wires</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>12.1</td>
</tr>
<tr>
<td>2.5</td>
<td>7.41</td>
</tr>
<tr>
<td>4</td>
<td>4.61</td>
</tr>
<tr>
<td>6</td>
<td>3.08</td>
</tr>
<tr>
<td>10</td>
<td>1.83</td>
</tr>
<tr>
<td>16</td>
<td>1.15</td>
</tr>
<tr>
<td>25</td>
<td>0.727</td>
</tr>
<tr>
<td>35</td>
<td>0.524</td>
</tr>
<tr>
<td>50</td>
<td>0.387</td>
</tr>
<tr>
<td>70</td>
<td>0.268</td>
</tr>
<tr>
<td>95</td>
<td>0.193</td>
</tr>
<tr>
<td>120</td>
<td>0.153</td>
</tr>
<tr>
<td>150</td>
<td>0.124</td>
</tr>
<tr>
<td>185</td>
<td>0.101</td>
</tr>
<tr>
<td>240</td>
<td>0.0775</td>
</tr>
<tr>
<td>300</td>
<td>0.062</td>
</tr>
</tbody>
</table>
Class 2 Stranded Conductors for Single Core and Multi-Core Cables

<table>
<thead>
<tr>
<th>NOMINAL CROSS SECTIONAL AREA mm²</th>
<th>MINIMUM NO. OF WIRES IN CONDUCTOR</th>
<th>MAXIMUM RESISTANCE OF CONDUCTOR AT 20°C ohms/km</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Circular</td>
<td>Circular Compacted</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>Al</td>
</tr>
<tr>
<td>1.5</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>2.5</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>25</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>35</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>50</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>70</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>95</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>120</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>150</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>185</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>240</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>300</td>
<td>61</td>
<td>61</td>
</tr>
</tbody>
</table>

The above table is in accordance with EN 60228

ELECTRICAL CHARACTERISTICS

Current Carrying Capacity

<table>
<thead>
<tr>
<th>NO. OF CORES</th>
<th>NOMINAL CROSS SECTIONAL AREA mm²</th>
<th>CONDUCTOR TYPE</th>
<th>CURRENT CARRYING CAPACITY Amps</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>In Duct</td>
</tr>
<tr>
<td>1</td>
<td>2.5</td>
<td>RE</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>RE</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>RE</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>RM</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>RM</td>
<td>127</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>RM</td>
<td>163</td>
</tr>
<tr>
<td>1</td>
<td>35</td>
<td>RM</td>
<td>195</td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>RM</td>
<td>230</td>
</tr>
<tr>
<td>1</td>
<td>70</td>
<td>RM</td>
<td>282</td>
</tr>
<tr>
<td>1</td>
<td>95</td>
<td>RM</td>
<td>336</td>
</tr>
<tr>
<td>1</td>
<td>120</td>
<td>RM</td>
<td>382</td>
</tr>
<tr>
<td>1</td>
<td>150</td>
<td>RM</td>
<td>428</td>
</tr>
<tr>
<td>1</td>
<td>185</td>
<td>RM</td>
<td>483</td>
</tr>
<tr>
<td>1</td>
<td>240</td>
<td>RM</td>
<td>561</td>
</tr>
<tr>
<td>1</td>
<td>300</td>
<td>RM</td>
<td>632</td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
<td>RE</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>2.5</td>
<td>RE</td>
<td>42</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>RM</td>
<td>54</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>RM</td>
<td>68</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>RM</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>RM</td>
<td>116</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>RE</td>
<td>26</td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS

Current Carrying Capacity

<table>
<thead>
<tr>
<th>NO. OF CORES</th>
<th>NOMINAL CROSS SECTIONAL AREA mm²</th>
<th>CONDUCTOR TYPE</th>
<th>CURRENT CARRYING CAPACITY Amps</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2.5</td>
<td>RE</td>
<td>34 In Duct</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>RE</td>
<td>44 In Air</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>RE</td>
<td>56 In Air</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>RM</td>
<td>56 In Air</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>RM</td>
<td>75 In Air</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>RM</td>
<td>98 In Air</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>RM</td>
<td>128 In Air</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td>RM</td>
<td>157 In Air</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>RM</td>
<td>185 In Air</td>
</tr>
<tr>
<td>3</td>
<td>95</td>
<td>RM</td>
<td>275 In Air</td>
</tr>
<tr>
<td>3</td>
<td>120</td>
<td>RM</td>
<td>313 In Air</td>
</tr>
<tr>
<td>4</td>
<td>1.5</td>
<td>RE</td>
<td>26 In Duct</td>
</tr>
<tr>
<td>4</td>
<td>2.5</td>
<td>RE</td>
<td>34 In Air</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>RE</td>
<td>44 In Air</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>RM</td>
<td>44 In Air</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>RE</td>
<td>56 In Air</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>RM</td>
<td>56 In Air</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>RM</td>
<td>75 In Air</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>RM</td>
<td>98 In Air</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>RM</td>
<td>128 In Air</td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td>RM</td>
<td>157 In Air</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>RM</td>
<td>185 In Air</td>
</tr>
<tr>
<td>4</td>
<td>70</td>
<td>RM</td>
<td>252 In Air</td>
</tr>
<tr>
<td>4</td>
<td>95</td>
<td>RM</td>
<td>303 In Air</td>
</tr>
<tr>
<td>4</td>
<td>120</td>
<td>RM</td>
<td>313 In Air</td>
</tr>
<tr>
<td>4</td>
<td>150</td>
<td>RM</td>
<td>390 In Air</td>
</tr>
<tr>
<td>4</td>
<td>185</td>
<td>RM</td>
<td>399 In Air</td>
</tr>
<tr>
<td>4</td>
<td>240</td>
<td>RM</td>
<td>464 In Air</td>
</tr>
<tr>
<td>5</td>
<td>1.5</td>
<td>RE</td>
<td>24 In Duct</td>
</tr>
<tr>
<td>5</td>
<td>2.5</td>
<td>RE</td>
<td>34 In Air</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>RE</td>
<td>44 In Air</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>RM</td>
<td>44 In Air</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>RE</td>
<td>56 In Air</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>RM</td>
<td>56 In Air</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>RM</td>
<td>75 In Air</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>RM</td>
<td>98 In Air</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>RM</td>
<td>128 In Air</td>
</tr>
<tr>
<td>7</td>
<td>1.5</td>
<td>RE</td>
<td>15 In Duct</td>
</tr>
<tr>
<td>7</td>
<td>2.5</td>
<td>RE</td>
<td>20 In Air</td>
</tr>
<tr>
<td>12</td>
<td>1.5</td>
<td>RE</td>
<td>12 In Air</td>
</tr>
<tr>
<td>12</td>
<td>2.5</td>
<td>RE</td>
<td>16 In Air</td>
</tr>
<tr>
<td>14</td>
<td>1.5</td>
<td>RE</td>
<td>12 In Air</td>
</tr>
<tr>
<td>19</td>
<td>1.5</td>
<td>RE</td>
<td>10 In Air</td>
</tr>
<tr>
<td>19</td>
<td>2.5</td>
<td>RE</td>
<td>13.6 In Air</td>
</tr>
<tr>
<td>27</td>
<td>1.5</td>
<td>RE</td>
<td>12 In Air</td>
</tr>
</tbody>
</table>
Ambient Temperature: 30°C
Depth of Laying: 0.5m
Ground Temperature: 15°C
Thermal Resistivity of Soil: 12km/w

DE-RATING FACTORS
For Air Temperature other than 30°C

<table>
<thead>
<tr>
<th>AIR TEMPERATURE</th>
<th>20°C</th>
<th>25°C</th>
<th>30°C</th>
<th>35°C</th>
<th>40°C</th>
<th>45°C</th>
<th>50°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE-RATING FACTOR</td>
<td>1.12</td>
<td>1.07</td>
<td>1.00</td>
<td>0.94</td>
<td>0.87</td>
<td>0.79</td>
<td>0.71</td>
</tr>
</tbody>
</table>

The information contained within this datasheet is for guidance only and is subject to change without notice or liability. All the information is provided in good faith and is believed to be correct at the time of publication. When selecting cable accessories, please note that actual cable dimensions may vary due to manufacturing tolerances.