YMz1Krvasdlwd-AL 12/20kV Cable

Eland Product Group: B1E

APPLICATION
LSZH Medium Voltage cable with aluminium conductors offering a lightweight alternative to copper conductor alternatives. Suitable for use in conduit and for fixed, protected installation. For installations where fire, smoke emission and toxic fume create a potential risk to life and equipment.

CHARACTERISTICS
Voltage Rating Uo/U
12/20kV

Temperature Rating
Fixed: 0°C to +90°C
Maximum Conductor Short-Circuit Temp up to 5 sec: 250°C

Minimum Bending Radius
Single Core: 15 x overall diameter
Multi Core: 12 x overall diameter

CONSTRUCTION
Conductor
Class 2 Stranded Aluminium

Inner Semi-Conductive Layer
Semi-Conductive Material

Insulation
XLPE (Cross-Linked Polyethylene)

Outer Semi-Conductive Layer
Semi-Conductive Material

Screen
Copper wires and tape

Tape
Longitudinal and Radial Water Blocking

Outer Sheath
LSZH (Low Smoke Zero Halogen) UV Resistant

Core Identification
Multi Cores: ● Brown ● Black ● Grey

Sheath Colour
● Red

STANDARDS
Generally to HD 620-10J / NEN 3620
Fire Resistant to BS EN/IEC 60332-1-2, BS EN/IEC 60332-3-24 Cat.C

ISO/IEC 17025 LABORATORY TESTED
This product is subject to the Quality Assurance protocols of The Cable Lab®, an ISO/IEC 17025 accredited cable testing laboratory. Testing includes vertical flame, conductor resistance, tensile & elongation, and dimensional consistency, verified to published standards and approved product drawings.

REGULATORY COMPLIANCE
This cable meets the requirements of the Low Voltage Directive 2014/35/EU and the RoHS Directive 2011/65/EU. RoHS compliance has been tested and confirmed by The Cable Lab® as meeting the requirements of the BSI RoHS Trusted Kitemark®.

RoHS Trusted
KITEMARK™
KM 634267
DIMENSIONS

<table>
<thead>
<tr>
<th>ELAND PART NO.</th>
<th>NO. OF CORES</th>
<th>NOMINAL CROSS SECTIONAL AREA mm^2</th>
<th>NOMINAL CROSS SECTIONAL AREA OF SCREEN mm^2</th>
<th>NOMINAL DIAMETER OVER CONDUCTOR mm</th>
<th>NOMINAL THICKNESS OF INSULATION mm</th>
<th>NOMINAL THICKNESS OF SEMI-CONDUCTIVE LAYER mm</th>
<th>NOMINAL THICKNESS OF SHEATH mm</th>
<th>NOMINAL OVERALL DIAMETER mm</th>
<th>NOMINAL WEIGHT kg/km</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1E20KV01050RD</td>
<td>1</td>
<td>50</td>
<td>25</td>
<td>8.10</td>
<td>4.50</td>
<td>0.50 (fully bonded)</td>
<td>0.40 (fully bonded)</td>
<td>2.50</td>
<td>30</td>
</tr>
<tr>
<td>B1E20KV01070RD</td>
<td>1</td>
<td>70</td>
<td>25</td>
<td>9.70</td>
<td>4.50</td>
<td>0.50 (fully bonded)</td>
<td>0.40 (fully bonded)</td>
<td>2.50</td>
<td>31</td>
</tr>
<tr>
<td>B1E20KV01095RD</td>
<td>1</td>
<td>95</td>
<td>25</td>
<td>11.40</td>
<td>4.50</td>
<td>0.50 (fully bonded)</td>
<td>0.40 (fully bonded)</td>
<td>2.50</td>
<td>33</td>
</tr>
<tr>
<td>B1E20KV01120RD</td>
<td>1</td>
<td>120</td>
<td>25</td>
<td>12.60</td>
<td>4.50</td>
<td>0.50 (fully bonded)</td>
<td>0.40 (fully bonded)</td>
<td>2.50</td>
<td>34</td>
</tr>
<tr>
<td>B1E20KV01150RD</td>
<td>1</td>
<td>150</td>
<td>25</td>
<td>14.10</td>
<td>4.50</td>
<td>0.50 (fully bonded)</td>
<td>0.40 (fully bonded)</td>
<td>2.50</td>
<td>36</td>
</tr>
<tr>
<td>B1E20KV01185RD</td>
<td>1</td>
<td>185</td>
<td>25</td>
<td>15.80</td>
<td>4.50</td>
<td>0.50 (fully bonded)</td>
<td>0.40 (fully bonded)</td>
<td>2.50</td>
<td>37</td>
</tr>
<tr>
<td>B1E20KV01240RD</td>
<td>1</td>
<td>240</td>
<td>25</td>
<td>18.10</td>
<td>4.50</td>
<td>0.50 (fully bonded)</td>
<td>0.40 (fully bonded)</td>
<td>2.50</td>
<td>40</td>
</tr>
<tr>
<td>B1E20KV01300RD</td>
<td>1</td>
<td>300</td>
<td>25</td>
<td>20.20</td>
<td>4.50</td>
<td>0.50 (fully bonded)</td>
<td>0.40 (fully bonded)</td>
<td>2.50</td>
<td>42</td>
</tr>
<tr>
<td>B1E20KV01400RD</td>
<td>1</td>
<td>400</td>
<td>50</td>
<td>23.00</td>
<td>4.50</td>
<td>0.50 (fully bonded)</td>
<td>0.40 (fully bonded)</td>
<td>2.50</td>
<td>45</td>
</tr>
<tr>
<td>B1E20KV01500RD</td>
<td>1</td>
<td>500</td>
<td>50</td>
<td>26.00</td>
<td>4.50</td>
<td>0.50 (fully bonded)</td>
<td>0.40 (fully bonded)</td>
<td>2.50</td>
<td>48</td>
</tr>
<tr>
<td>B1E20KV01630RD</td>
<td>1</td>
<td>630</td>
<td>50</td>
<td>30.10</td>
<td>4.50</td>
<td>0.50 (fully bonded)</td>
<td>0.40 (fully bonded)</td>
<td>2.50</td>
<td>52</td>
</tr>
<tr>
<td>B1E20KV03050RD</td>
<td>3</td>
<td>50</td>
<td>70</td>
<td>8.10</td>
<td>4.50</td>
<td>0.50 (fully bonded)</td>
<td>0.40 (fully bonded)</td>
<td>3.20</td>
<td>60</td>
</tr>
<tr>
<td>B1E20KV03070RD</td>
<td>3</td>
<td>70</td>
<td>70</td>
<td>9.70</td>
<td>4.50</td>
<td>0.50 (fully bonded)</td>
<td>0.40 (fully bonded)</td>
<td>3.20</td>
<td>63</td>
</tr>
<tr>
<td>B1E20KV03095RD</td>
<td>3</td>
<td>95</td>
<td>70</td>
<td>11.40</td>
<td>4.50</td>
<td>0.50 (fully bonded)</td>
<td>0.40 (fully bonded)</td>
<td>3.20</td>
<td>67</td>
</tr>
<tr>
<td>B1E20KV03120RD</td>
<td>3</td>
<td>120</td>
<td>70</td>
<td>12.60</td>
<td>4.50</td>
<td>0.50 (fully bonded)</td>
<td>0.40 (fully bonded)</td>
<td>3.20</td>
<td>70</td>
</tr>
<tr>
<td>B1E20KV03150RD</td>
<td>3</td>
<td>150</td>
<td>70</td>
<td>14.10</td>
<td>4.50</td>
<td>0.50 (fully bonded)</td>
<td>0.40 (fully bonded)</td>
<td>3.20</td>
<td>73</td>
</tr>
<tr>
<td>B1E20KV03185RD</td>
<td>3</td>
<td>185</td>
<td>70</td>
<td>15.80</td>
<td>4.50</td>
<td>0.50 (fully bonded)</td>
<td>0.40 (fully bonded)</td>
<td>3.20</td>
<td>77</td>
</tr>
<tr>
<td>B1E20KV03240RD</td>
<td>3</td>
<td>240</td>
<td>70</td>
<td>18.10</td>
<td>4.50</td>
<td>0.50 (fully bonded)</td>
<td>0.40 (fully bonded)</td>
<td>3.20</td>
<td>82</td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS

Single Core

<table>
<thead>
<tr>
<th>NOMINAL CROSS SECTIONAL AREA mm^2</th>
<th>NOMINAL SHORT-CIRCUIT CURRENT FOR 1 SECOND kA</th>
<th>MAXIMUM CONDUCTOR DC RESISTANCE AT 20°C Ω/km</th>
<th>AC RESISTANCE BY MAXIMUM TEMPERATURE Ω/km</th>
<th>CURRENT CARRYING CAPACITY A</th>
<th>CONDUCTOR LOSSES IN THE GROUND $\text{kW/\text{km}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>4.70</td>
<td>0.0641</td>
<td>0.825</td>
<td>195</td>
<td>217</td>
</tr>
<tr>
<td>70</td>
<td>6.58</td>
<td>0.0443</td>
<td>0.570</td>
<td>237</td>
<td>270</td>
</tr>
<tr>
<td>95</td>
<td>8.93</td>
<td>0.0320</td>
<td>0.412</td>
<td>282</td>
<td>326</td>
</tr>
<tr>
<td>120</td>
<td>11.28</td>
<td>0.0253</td>
<td>0.328</td>
<td>320</td>
<td>378</td>
</tr>
<tr>
<td>150</td>
<td>14.10</td>
<td>0.0206</td>
<td>0.268</td>
<td>353</td>
<td>426</td>
</tr>
<tr>
<td>185</td>
<td>17.39</td>
<td>0.0164</td>
<td>0.213</td>
<td>396</td>
<td>485</td>
</tr>
<tr>
<td>240</td>
<td>22.56</td>
<td>0.0125</td>
<td>0.163</td>
<td>457</td>
<td>573</td>
</tr>
<tr>
<td>300</td>
<td>28.20</td>
<td>0.0100</td>
<td>0.132</td>
<td>511</td>
<td>652</td>
</tr>
<tr>
<td>400</td>
<td>37.60</td>
<td>0.0077</td>
<td>0.103</td>
<td>566</td>
<td>740</td>
</tr>
<tr>
<td>500</td>
<td>47.00</td>
<td>0.0060</td>
<td>0.0810</td>
<td>630</td>
<td>838</td>
</tr>
<tr>
<td>630</td>
<td>59.22</td>
<td>0.0049</td>
<td>0.0640</td>
<td>701</td>
<td>882</td>
</tr>
</tbody>
</table>
The information contained within this datasheet is for guidance only and is subject to change without notice or liability. All the information is provided in good faith and is believed to be correct at the time of publication. When selecting cable accessories, please note that actual cable dimensions may vary due to manufacturing tolerances.

ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>NOMINAL CROSS SECTIONAL AREA mm²</th>
<th>NOMINAL SHORT-CIRCUIT OF CONDUCTOR kA</th>
<th>MAXIMUM CONDUCTOR DC RESISTANCE AT 20°C Ω/km</th>
<th>CONDUCTOR AC RESISTANCE BY MAXIMUM TEMPERATURE Ω/km</th>
<th>CURRENT CARRYING CAPACITY A</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>4.70</td>
<td>0.641</td>
<td>0.825</td>
<td>167</td>
</tr>
<tr>
<td>70</td>
<td>6.58</td>
<td>0.443</td>
<td>0.570</td>
<td>205</td>
</tr>
<tr>
<td>95</td>
<td>8.93</td>
<td>0.320</td>
<td>0.412</td>
<td>244</td>
</tr>
<tr>
<td>120</td>
<td>11.28</td>
<td>0.253</td>
<td>0.328</td>
<td>279</td>
</tr>
<tr>
<td>150</td>
<td>14.10</td>
<td>0.206</td>
<td>0.268</td>
<td>312</td>
</tr>
<tr>
<td>185</td>
<td>17.39</td>
<td>0.164</td>
<td>0.213</td>
<td>355</td>
</tr>
<tr>
<td>240</td>
<td>22.56</td>
<td>0.125</td>
<td>0.163</td>
<td>412</td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS

Multi Core